닫기
Loading..

전자정보연구정보센터 ICT 융합 전문연구정보의 집대성

국내 논문지

홈 홈 > 연구문헌 > 국내 논문지 > 한국정보처리학회 논문지 > 정보처리학회 논문지 소프트웨어 및 데이터 공학

정보처리학회 논문지 소프트웨어 및 데이터 공학

Current Result Document : 1 / 3   다음건 다음건

한글제목(Korean Title) 향상된 음향 신호 기반의 음향 이벤트 분류
영문제목(English Title) Enhanced Sound Signal Based Sound-Event Classification
저자(Author) 최용주   이종욱   박대희   정용화   Yongju Choi   Jonguk Lee   Daihee Park   Yongwha Chung  
원문수록처(Citation) VOL 08 NO. 05 PP. 0193 ~ 0204 (2019. 05)
한글내용
(Korean Abstract)
센서 기술과 컴퓨팅 성능의 향상으로 인한 데이터의 폭증은 산업 현장의 상황을 분석하기 위한 토대가 되었으며, 이와 같은 데이터를 기반으로 현장에서 발생하는 다양한 이벤트를 탐지 및 분류하려는 시도들이 최근 증가하고 있다. 특히 음향 센서는 상대적으로 저가의 가격으로 현장 정보를 왜곡 없이 음향 신호를 수집할 수 있다는 큰 장점을 기반으로 다양한 분야에 설치되고 있다. 그러나 소리 취득 시 발생하는 잡음을 효과적으로 제어하지 못한다면 산업 현장의 이벤트를 안정적으로 분류할 수 없으며, 분류하지 못한 이벤트가 이상 상황이라면 이로 인한 피해는 막대해질 수 있다. 본 연구에서는 잡음 상황에서도 강인한 시스템을 보장하기 위하여, 딥러닝 알고리즘을 기반으로 잡음의 영향을 개선 시킨 음향 신호를 생성한 후, 해당 음향 이벤트를 분류할 수 있는 시스템을 제안한다. 특히, GAN을 기반으로 VAE 기술을 적용한 SEGAN을 활용하여 아날로그 음향 신호 자체에서 잡음이 제거된 신호를 생성하였으며, 향상된 음향 신호를 데이터 변환과정 없이 CNN 구조의 입력 데이터로 활용한 후 음향 이벤트에 대한 식별까지도 가능하도록 end-to-end 기반의 음향 이벤트 분류 시스템을 설계하였다. 산업 현장에서 취득한 음향 데이터를 활용하여 제안하는 시스템의 성능을 실험적으로 검증한바, 99.29%(철도산업)와 97.80%(축산업)의 안정적인 분류 성능을 확인하였다.
영문내용
(English Abstract)
The explosion of data due to the improvement of sensor technology and computing performance has become the basis for analyzing the situation in the industrial fields, and various attempts to detect events based on such data are increasing recently. In particular, sound signals collected from sensors are used as important information to classify events in various application fields as an advantage of efficiently collecting field information at a relatively low cost. However, the performance of sound-event classification in the field cannot be guaranteed if noise can not be removed. That is, in order to implement a system that can be practically applied, robust performance should be guaranteed even in various noise conditions. In this study, we propose a system that can classify the sound event after generating the enhanced sound signal based on the deep learning algorithm. Especially, to remove noise from the sound signal itself, the enhanced sound data against the noise is generated using SEGAN applied to the GAN with a VAE technique. Then, an end-to-end based sound-event classification system is designed to classify the sound events using the enhanced sound signal as input data of CNN structure without a data conversion process. The performance of the proposed method was verified experimentally using sound data obtained from the industrial field, and the f1 score of 99.29% (railway industry) and 97.80% (livestock industry) was confirmed.
키워드(Keyword) 잡음 견고성   음향 신호 생성   End-to-End 구조   딥러닝   Noise Robustness   Sound Signal Generation   End-to-End Architecture   Deep Learning  
원문 PDF 다운로드